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Abstract—A procedure is developed for extending simple iterative design techniques for trusses to the case in
which deflection constraints are present. For statically determinate trusses, this procedure involves
modifying both the stiffness matrix and the joint load matrix in the analysis/redesign cycle; for statically
indeterminate trusses, the allowable stress must also be modified.

INTRODUCTION
The formulation of structural design as a nonlinear programming problem was an extremely
important step but it is now clear that it was only a first step. In pursuing the nonlinear
programming problems which arise in design, considerable algorithmic difficulties have
developed[1] to the extent that a simple design situation can require a massive computational
effort.

Somewhat anomalous to these algorithmic difficulties is the fact that engineers do *“quite well”
today in complex design situations which would be impossible as nonlinear programming
problems. The engineer usually performs a kind of iterative design in which initial assumptions
are subsequently modified on the basis of an analysis/redesign cycle. In [2-3] this iterative
procedure was examined for a simple truss design problem and it was shown that in this case,
allowable stress design—which would appear to deal with questions of safety—can produce
designs of minimum weight. In more complex situations such as frame and sandwich plate design,
allowable stress design does not lead to minimum weight but can be modified [4] to do so.

In these studies of iterative design, simplification was achieved through the relaxation of the
constitutive equations and the optimization problems formulated in terms of forces and
moments. When deflection constraints are included, it is, of course, not possible to relax the
constitutive equations and the optimization problems which result are considerably more
complicated than those which do not involve deflection constraints.

In this paper, the simple case of a truss design problem with constant allowable stress and
deflection constraints is examined. It will be shown that in the case of statically determinate
trusses, iterative design using a modified load matrix and a modified stiffness matrix will lead to
minimum weight design. The general case is treated as a two phase process involving the
statically determinate case and a second phase in which the allowable stress is modified. it may be
noted that Schmit and Fox[9] have used an “integrated approach” which also simultaneously
considers the effects of deflection and stress constraints, but their algorithm is unrelated to the
algorithm used in this paper.

The paper begins in the next section with an outline of the analysis problem, this is followed
by a formal statement of design with deflection constraints as an optimization problem, iterative
design is then developed, and finally examples are presented.

THE ANALYSIS PROBLEM
The displacement (node) method of structural analysis can be represented as [5]

NF=P node equilibrium
F=KA constitutive equation )
A=N8 member—joint displacement relationship
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For the case of a truss with B bars and J joint degrees of freedom, N is a B X J matrix of
direction cosines, K is a B X B diagonal matrix in which K; = A;E/L;, F and A are B x 1
member force and displacement matrices, and P and 8 are J X 1 joint force and displacement
matrices. Here

Ar-area of member i
L~length of member i
E-Young’s modulus.

Equation (1) is usually first solved for & as
5 =(NKN)'P Q)
from which A and F follow directly.

THE DESIGN PROBLEM
In the analysis problem, it is required to find F, A, and & given N, K, and P; that is, given a
structure and the applied loads, find the response. In the design problem considered here, in
addition to determining the response, the member areas are to be determined so that the weight is
minimized while certain constraints described below are satisfied.
It is convenient at this point to introduce the concept of the allowable length change A’ of
member i,

Af =0°L/E=0 €)

where o® =0 is the given allowable stress. it may be noted that when the member length change
is less than the allowable length change A;°, the member stress is less than the allowable member
stress:

"All =A"

FL|_o'L
> |RE|=% @

or
|FilAil = o”. (5)

In the context of this paper a deflection constraint is simply a statement that the absolute
value of a given displacement component at a node is limited in magnitude. Since stress
constraints such as equation (5) are equivalent to constraints on member length changes, it is
possible to specify deflection constraints by adding fictitious bars of appropriate length to the
structure while at the same time requiring the forces in these bars to be zero. This is indicated
schematically in Fig. 1.

_ f/c‘r/r/ous bar
deflection <»
. constraint -
direction

4 / %% 5> / 5,

Fig. 1.

It is now possible to state the design problem formally as

minimize 2 L-l(Ax“ )?

A
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subject to NF=P
A=Nbs
’A‘ <A® or |A1| SAia (6)
F;=0 inallfictitious bars
sgn Fi=sgn A

The objective function in equation (6) is proportional to the truss volume which is proportional to
the truss weight since

S Harr-3 kar-F s aL ™

This form of the design problem has several advantages. The unknowns in this case are F, § and
A, i.e. it is required to find member forces and displacements which minimize the objective
function (weight) while satisfying the constraints. With the exception of the last constraint, the
constraints are linear and the forces and displacements are coupled only in the objective
function. Equation (6) is furthermore similar in form to the dual linear programming formulation:

Primal problem
minimize Y, |F|A° subjectto NF = P. (8)
i

Dual problem
maximize P& subjectto|N§|=A®

which was developed{2] for the case in which there are only stress constraints. Since this
similarity will actually be used to develop an algorithm for the solution of equation (6) in the
sections which follow, it is of interest to note here that the solution of equation (8) may be
obtained through an “allowable stress design” type iterative procedure at each step solving

NF(n) =p F® = KMA™ A® = N§™ )
and iterating
K™ =|F"|As (10)

where the only requirement on K is that it be positive definite. This is, of course, a repeated
application of the node method, equation (1). It has been shown this procedure converges
monotonically [3] and that it is a Newtonian procedure [4].

It is also of some interest to note here that the formulation with deflection constraints,
equation (6) differs from the formulation which does not include deflection constraints, equation
(8), by the fact that in the former it is not possible to assume a fully-stressed design. For
fully-stressed designs

|Fi|/Ai =c" > |E|/|A:, =Ki= |F;|E/(O'GL.)
=|F|/Af (1m

and equation (6) reduces to equation (8).

THE STATICALLY DETERMINATE CASE

Because of the manner in which the variables separate in equation (6), it is natural to think of
solution procedures in which either F or A is varied while the other is held fixed. The case in
which F is known will be referred to here as the statically determinate case and discussed in this
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section. This is a slight variation upon common usage of the designation of statical determinacy
which usually implies that the bar forces can be computed from equilibrium as F = N~'P.
When F is known, equation (6) becomes

minimize 2 ]—I(Ai“ )

|A:]

subject to (12)
A= Né
|a] = A°
sgnA;=sgn F;

In the work which follows the constraint sgn A, = sgn F; will be satisfied by the computational
procedure developed and no longer stated explicitly. The Lagrangean of equation (12) is then

2]‘—AF—'%(A,")2+&(A—N5)+B'(A“ —1AD (13)

in which o and B are (matrix) Lagrange multipliers. The Kuhn Tucker conditions for this system
are

(a) -:—i{-:ﬂ#—F(AAi) +o; — Bng]'lAi=0
(b) gf 0> (Na) =0 (14)
© gf_0=>A = (N8);

@ B@~-]ah=0

The first two of these conditions can be combined by multiplying condition (a) by the matrix N
and using condition (b) to give

—N( (AAa)z) N8 sgn &) =0 (15)

in somewhat symbolic notation. Let

()

the Kuhn Tucker conditions for equation (12) then become

N(B sgnA) = P*
A= Né a7
BAF —|Ap=0

The dual problem of equation (8) has the Lagrangean
£ = Ps + (A" — |N8}) (18)

in which y is a (matrix) Lagrange multiplier and has the Kuhn Tucker conditions

oL

(@) Fry

=0 P, —(Ny sgn(N8)),=0
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®) %A —|(N8)|)=0 (19)

At this point the similarity between equation (17) and equation (19) can be used to develop a
solution procedure for equation (12). While equation (17) makes explicit use of the A and equation
(19) does not, this is only the question of a simple transformation. The real difference between
these equations lies in the fact that in the former P* is a function of the variable A while in the
latter, P is a given matrix. Put another way, in the linear programming problem the equilibrium
equations are linear while their analog in equation (17) is nonlinear.

The standard Newtonian algorithm requires the linearization of a system at each step. When
the nonlinear equilibrium equations have been linearized, equation (17) becomes identical in form
with equation (19) and the iterative procedure described in equations (9-10) becomes, with
appropriate modification, a scheme for the solution of equation (12). This is done most simply by
expanding the term (A,*/A,)’ in a Taylor series about the point A™,

When multiplied by the matrix N, the constant term in equation (20) gives rise to the analog of the
joint load in the node method; the linear term, when written in terms of node displacements,
corresponds to a simple modification of the stiffness matrix—something like the geometric
stiffness term (6) used in nonlinear structural analysis.

Symbolically, this solution procedure involved iterating

N(Ke™ + K&)Ns 0 = p™ @n
and
KE(’I+1))H = (KE(n))iilAi(")llAia (22)
+1 (Aiﬂ)2
(K" )i = 2F 7o (23)
(A™)
where
= . Aza 2
P™ =3N|F W) ) (24)
i

In summary the two modifications which must be made to the linear programming problem
(equation 8) in order to include the effects of deflection constraints may now be seen in equation
(20). When multiplied by the matrix N in order to write joint equilibrium, the constant term in this
equation corresponds to the usual given (constant) joint load term. The linear term in equation
(18), when written in terms of joint displacements for the node method, requires changing the
usual stiffness matrix. The solution follows by modifying any given computer program for truss
analysis to (a) iterate, (b) adjust the joint load matrix as the displacements change from iteration
to iteration, and (c) include a corrected stiffness matrix. Given a basic truss analysis program,
these modifications are simple to carry out.
Examples are included in the final section of this paper.

THE STATICALLY INDETERMINATE CASE

The formulation in the statically indeterminate case (the general case) has been given in
equation (6). In this case the Lagrangean is

£= ZlAI(A.)+a(A N&)+ (A~ A+ X (P - NF) 5)

which represents an addition of one term to equation (13). The Kuhn Tucker conditions in the
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general case then contain two terms,

(a) ;%7=0 > (sgnE)%—(N)\).- =0

(b) NF=P (26)

in addition to those in equation (14).

As suggested above, the general case will be solved by iterating varying F while holding A
fixed and then varying A, holding F fixed. The case in which F is held fixed (known) is given in
the preceding section. When A is held fixed, equation (6) reduces to

minimize %(A:‘ ) subject to NF = P. 27)

This problem is identical in form with the primal problem of equation (8) and therefore any
algorithm which can be used to solve equation (8) can be used to solve this problem. In terms of
detail, what was A,” in equation (8) has become (A;")*/|A;| in equation (27). For that reason, the
problem of deflection constraints can be regarded as requiring the use of a fictitious allowable
length change or allowable stress.

Since equation (21) is a linear programming problem, it follows that there exists an optimal
statically determinate structure (2). Were this not true the fundamental theorem of linear
programming would be violated when applied to equation (27) using the optimal value of A.

SOME EXAMPLES

The method proposed above for weight minimization in the presence of deflection constraints
is essentially a generalization of the well known allowable stress design procedure and involves
simply an analysis/redesign cycle. While the general efficacy of the method will only be
understood after it has been used for some time, it has the immediate advantage of being easy to
implement. In fact, the examples below have been carried out using a 15-20 card modification of
the plane truss program given in [5].

Figure 2 shows a rather simple but instructive example. In this case, equation (12) becomes

minimize 1 + L
Ay 24,
subject to
A =1
|A2]=1/2
A+ A =1
AL, A =0

(28)

£l L0 - ’/SE fictitious bar

2 — = =/
> Fp:2 520 L= 75

Lo=7p

Fig.2.

Several aspects of Fig. 3 are typical of problems with deflection constraints:

1. The solution lies on the boundary of a convex region defined by the linear constraints but
may not be an extreme point. (It is not in this case.)

2. The force vector has been plotted in Fig. 3. Since in the absence of deflection constraints
the design problem may be written as maximize P8 = FA = F. A, point A is an optimal solution
when the deflection constraint is absent. Point B is easy to get from the linear programming
problem, is feasible, and thus a tempting approximate solution to the problem with deflection
constraints.
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3. The surfaces of constant weight are convex surfaces as indicated by Prager[7).

The convergence of the iterative scheme is indicated in Fig. 4.
Figure 5 shows a less interesting example in which a unit load is applied vertically at the
center of the truss on the lower chord. This turns out to be a case in which in order to meet the
deflection constraints, all the bar areas are increased proportionally. Here E = 30 x 10° psi and

o® = 20,000 psi. Convergence is shown in Fig. 6.

4,
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The final two examples deal with the statically indeterminate case; since the optimal solution
is statically determinate the algorithm must select an optimal substructure from the given bars
and joints. The first of these examples which is shown in Fig. 7 is rather predictable. Convergence

in this case is indicated in Fig. 8. Here E=¢" =1.
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In the final example shown in Fig. 9, the basic structure from the previous example is used,
but this time an additional load has been added and the deflection constraint changed. Were it not
for the deflection constraint an optimal structure would contain an element like the optimal truss
shown in Fig. 7 for each load and the weight would be 13x6=9. Because of the deflection
constraint, the optimal structure has a weight of 11 and has the configuration indicated in Fig. 10.
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Figure 11 shows the convergence for the case of this final example and, in fact, as shown, the
basic algorithm did not converge. Two things of interest did, however, occur:

(a) While it appears in Fig. 11 that nothing is happening after about iteration 18, a more
detailed examination of the computer printout shows that the forces in the members are in fact
converging to the optimal force system while the objective function remains almost constant.
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(b) Before this process terminated, the structure became somewhat singular due to the many
bar areas going to zero making it difficult to continue the calculations. However, by the time the
structure had become singular, the optimal substructure had become evident and it was possible
to complete the calculations using the optimal statically determinate substructure.

The difficulty with the structure becoming singular when many bar areas go to zero appeared
in an earlier work [8] in which an algorithm was also asked to select an optimal substructure. The
earlier conclusion that this is not an effective way in which to generate configurations
automatically seems again verified by the last example here.

CONCLUDING REMARKS

This paper extends earlier work on iterative design to include questions of deflection
constraints. The thrust of the paper is computational and no new properties of optimal designs
have been identified. The principal advantage of the method proposed is simplicity: It only
requires minor modifications of an analysis program for its implementation.

With regard to more general classes of structures, it would appear that the extension of this
proposed algorithm to frames and sandwich plates is straightforward using [4].
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